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ABSTRACT Image quality evaluation of electronic displays is inherently subjective. To date, user studies 
in focus groups and viewers’ self-reports have been the primary sources of feedback used as judgment criteria 
for the display quality. However, little has been known whether the measured responses to visual stimuli, 
other than self-reports, reflect the objective and subjective levels of image quality on displays. Here, we used 
electroencephalogram (EEG) and eye-tracking to investigate whether individuals’ neural and physiological 
responses to visual stimuli track three objectively discerned levels of image quality, as well as their self-
ratings on vividness. Our findings reveal that event-related potentials (ERPs) at 200-300 msec after stimulus 
onset in the frontocentral brain region, as well as saccade and blink frequencies, significantly tracked (cluster-
based permutation p < 0.05) the objective perspective of image quality. In contrast, ERPs at 600 msec in the 
frontolateral region and saccade peak velocity tracked (cluster-based permutation p < 0.05) the subjective 
evaluation of image quality. Individuals’ pupil diameter successfully tracked (cluster-based permutation p < 
0.05) both objective and subjective perspectives of image quality. These patterns highlight both the shared 
characteristics and measurable distinctions between objective image quality and subjective vividness ratings. 
This study demonstrates the effectiveness of EEG and eye-tracking as quantitative tools for assessing 
objective image quality disparities and the subjective affective nuances of users' visual display experiences, 
potentially reducing reliance on self-reports. 

INDEX TERMS EEG, Eye-tracking, Image quality, Neurophysiological marker  

I. INTRODUCTION 
Most of the modern media contents are delivered through 
electronic displays. To enhance user experience and 
optimize human interaction with displays, various studies 
have explored the impacts of different display conditions 
(e.g., different levels of luminance, contribution of blue 
lights, depth of display, and display curvature) on 
increasing image quality [1-3]. Developments over the 
most recent decade have been focusing on accomplishing 
high-end ‘natural image quality’ rather than simply 
enhancing optical characteristics (e.g., resolution, 
brightness), by which the display can deliver more realistic 
contents and even induce more empathetic responses to 
viewers [4]. Given the subjective nature of such 
psychological responses, the importance of assessing 

subjective image quality other than objective measures 
(e.g., contrast, sharpness, brightness) has been stressed [5]. 
In stark contrast to objective measures, there are currently 
no alternative methods available to examine individuals’ 
subjective image quality assessments aside from directly 
collecting self-reports. Several attempts have been made to 
develop statistical models using objective image quality 
measures to predict users’ subjective image quality 
assessment results [6, 7]. These studies suggested that the 
structural variation of images or a combination of objective 
features (e.g., contrast, sharpness, brightness) can explain 
individuals’ image quality assessments. However, these 
models only accounted for group-level associations and fail 
to explain differences in assessments across individuals. 
Here, we propose that individuals’ neural and physiological 
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responses to different levels of image quality can be used 
to measure their subjective assessments. 
 
In the field of Cognitive Neuroscience, numerous studies 
showed that individuals’ neurophysiological signals reflect 
their emotional states, perception of presented information 
[8-12]. For example, eye-tracking has been used to extract 
individuals’ gaze, saccade, and eye-blinking information, 
reflecting the level and the shifting of one’s attention [1]. 
Eye-tracking is often conducted in conjunction with 
measuring pupil dilation, which is associated with arousal 
level, affective states, and various types of value-related 
information being processed [9, 13-15]. Based on these 
previous reports, we expected that eye-tracking data could 
serve as a pivotal tool in elucidating subjective image 
quality assessment, where the requirement extends beyond 
understanding the consequences of visual processing to 
encompass the subjective interpretation of the processed 
information.  
 
Electroencephalogram (EEG) is another highly accessible 
and frequently used tool in the field of vision studies [10, 
11, 16]. It has been shown that the early stage of visual 
processes, including the recognition of the presentation of 
visual stimuli, state of attention, and the detection of visual 
features that violate expectations, is represented as event-
related potentials (ERPs) within a few hundred 
milliseconds after the stimulus onset [12, 17-19]. In 
addition, previous studies showed that evoked EEG 
responses to emotion-eliciting pictorial stimuli not only 
capture the outcomes of low-level cognitive processes but 
also that of affective processes, which is known to be rather 
complex and subjective [20-22]. In particular, low-level 
characteristics of the presented stimuli (e.g., contrast or 
luminance) were represented in the early period of such 
evoked EEG responses [23], while arousal levels associated 
with the stimuli were captured in the later period [20, 21, 
24]. There were several attempts to use EEG in studying 
individuals’ responses to viewing displays [25, 26]. 
However, the emphasis in these studies has been on 
identifying viewers’ fatigue rather than on detecting 
individuals’ assessments of the display’s image quality 
(c.f., evaluation of display blurriness [27]).  
 
While subjective evaluations using Likert rating scales 
provide direct input from participants, they are susceptible 
to response biases and may fail to capture individuals’ 
subconscious or covert responses. In contrast, eye-tracking 
and EEG have been shown to effectively capture covert 
information processing in the brain, making them valuable 
tools for assessing subjective phenomena like image 
quality in a more objective and quantifiable manner. In this 
study, we aim to assess whether physiological and 
neurological measures can reliably track subjective 

evaluations of image quality, offering an objective 
complement to traditional self-reports.  
 
In the current study, we collected EEG and eye-tracking 
data while participants were viewing image stimuli 
prepared at different levels of image quality. We selected 
these methods over alternative neuroscientific tools (e.g., 
positron emission tomography (PEG), functional magnetic 
resonance imaging) for two main reasons. First, we assumed 
that users’ responses to visual stimuli occur instantaneously, 
similar to forming a first impression of a product. Both EEG 
and eye-tracking offer fine temporal resolution (on the order 
of milliseconds, compared to seconds in functional MRI or 
minutes in PET), making them well-suited for capturing such 
rapid cognitive responses. Second, a potential application of 
our finding lies in industry where user experience is assessed 
across a broad range of potential buyers and users. Given this 
context, we selected EEG and eye-tracking because they are 
highly accessible, potentially portable, and relatively cost-
effective compared to other neuroscientific tools. As an 
objective criterion for image quality, we benchmarked an 
image quality enhancement algorithm called ‘White-
boosting’, a novel algorithm available on a commercially 
available TV set designed to enhance image quality by 
adjusting luminance. Individuals were instructed to view 
the presented stimuli and self-report perceived image 
quality as well as their perception of image-associated 
emotion for each stimulus. Both EEG and eye-tracking data 
were analyzed to examine the neurophysiological 
representation of objective and/or subjective image quality. 
 
 
II. MATERIAL AND METHODS 

A. DISPLAY SETTINGS: ‘WHITE-BOOSTING’ MODE 
In the current study, a commercial display, 55-inch 4K OLED 
TV, C1 Series (LG Electronics Inc., South Korea) was used. 
To simulate different levels of image quality, we benchmarked 
the ‘White-boosting’ algorithm available on the TV set. Under 
the white-boosting settings, pixels with low saturation 
undergo a substantial increase in luminance. In a previous 
study, it was shown that increasing the White-boosting setting 
enhances individuals’ evaluations of the vividness of the 
image content [28]—a positive attribute of a visual stimuli. To 
manipulate the image quality to vary along this direction, the 
highest image quality was configured to replicate the 
colorimetric characteristics of the display with the White-
boosting mode set to high, while the lowest image quality was 
configured to mimic the display with the function turned off. 
In the experiment, three levels of White-boosting modes (off, 
low, and high) and two chromaticity gamut settings (Digital 
Cinema Initiatives-Protocol 3 (DCI-P3) [29] and standard 
RGB (sRGB) [30]) were simulated while the TV was set to 
have maximum White-boosting level. The degree of 
luminance increment of each pixel was determined by 
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saturation. Lower saturation had higher increment ratio. Fig. 1 
shows the measured chromaticity of the primaries and tone 
curves where the White-boosting level was turned off and set 
to high, respectively. Note that White-boosting algorithm did 
not alter the chromaticity and the luminance of the primary 
colors but doubled the luminance of white. 

 

 

FIGURE 1. CIE xy chromaticity and tone curves of display after 
simulation. (a) CIE xyY values of White and Red, Green, Blue primary colors 
were measured for White-boosting off and high settings. (b)The chromaticity 
gamut area of the experimental display is comparably wide to that of DCI-P3. 
(c) Luminance of the gray scales was measured and normalized compared to 
the peak luminance of the White-boosting off setting. It is notable that the 
luminance of white for the High setting is twice as high as that for the Off 
setting. 
 

B. PARTICIPANTS 
Nineteen college students were recruited from Ulsan National 
Institute of Science Technology (UNIST). None of the 
participants reported a history of neurological or psychiatric 
disorder, traumatic brain injury, or vision-related health issues. 
Data from two participants were excluded due to partial data 

loss during the saving process. After the exclusion, final 
sample included 17 participants (male/female = 15/2, age = 
22.0 ± 2.4). All participants reported normal or corrected-to-
normal vision under soft contact lenses. The current study was 
approved by the Institutional Review Board (IRB) of Ulsan 
National Institute of Science and Technology (UNISTIRB-22-
63-A). All participants provided written informed consent 
prior to their participation and were paid for their participation. 
All experimental procedures were performed in accordance 
with relevant guidelines and regulations approved by the IRB. 
No statistical methods were used to predetermine the sample 
size. However, the sample size of 17 was chosen based on 
previous studies in similar experimental contexts, which used 
comparable sample sizes and demonstrated sufficient 
sensitivity to detect significant features from EEG and eye-
tracking measures [11, 16, 27]. 

C. EXPERIMENTAL PROCEDURE 
The stimuli for the current study were images selected from 
the International Affective Picture System (IAPS) database 
[31], which can be mapped onto the arousal-valence model 
dimensions. To control for the effects of image-elicited 
emotion on image quality assessment, we selected images 
based on their average valence ratings reported in the original 
database (scaled 1-7, 1=negative, 7=positive); 14 negative, 14 
neutral, and 14 positive images were selected within the range 
of 2-3.5 (mean = 2.75, SD = 0.49), 3.5-6.5 (mean = 5.14, SD 
= 0.23), and 6.5-8 (mean = 6.94, SD = 0.36), respectively. 
Arousal levels are relatively higher for the negative or positive 
images compared to neutral images, and thus we intentionally 
matched the arousal levels only between positive and negative 
images (two-sample t-test, t26 = 1.43, p = 0.17). Each IAPS 
image was used as input to generate images with different 
objective image quality. Specifically, original images were 
adjusted to three levels of White-boosting (off, low, high) and 
two levels of color-gamut (DCI-P3, sRGB). In total, 
individuals went through 504 trials ([42 IAPS image] ´ [3 
White-boosting] ´ [2 color-gamut] ´ [2 repetition]) of image 
rating.  
 
With the White-boosting adjustment, pixels with low 
saturation undergo a substantial increase in luminance. 
Consistent with the findings of the previous study [28], it was 
expected that this enhancement will further amplify the 
vividness of the image content. To examine EEG and eye-
tracking data specific to each image, participants were shown 
one image at a time, depicted in a single TV set. Although the 
evaluation setting differs from our behavioral pilot study, we 
expected that vividness rating would capture individuals’ 
relative assessments of image quality. Before the image rating 
started, participants were reminded of the rating criterion, i.e., 
vividness. In addition to the vividness rating block, we 
introduced two additional blocks where individuals were 
instructed to rate the arousal or valence of the same set of 
images, presented in a pseudorandom order. By including 
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these blocks, we provided conditions in which implicit neural 
and physiological representations of objective image qualities 
could be examined, along with that during explicit evaluation. 
The order of the three rating blocks was counterbalanced 
across participants. 
 
Throughout the rating task, participants completed three 
blocks of ratings, wherein they were instructed to assess a 
series of images prepared as described above (Fig. 2a). 
Participants were informed of the evaluation criterion to apply 
(vividness, arousal, or valence) at the beginning of each block. 
Following an initial brief fixation screen, the prepared set of 
images was presented in a pseudorandom sequence, and 
participants were instructed to provide their ratings on a 6-
point Likert-scale at their own pace. A 6-point Likert scale was 
chosen to minimize participants' hand movements during the 
task and reduce potential motion artifacts in concurrent 
neurophysiological signal measurements. A crosshair was 
overlaid at the center of each image immediately after the 
participant’s response, and the screen transitioned to the next 
stimulus after a brief interval. To investigate neural and 
physiological responses associated with image quality 
assessment, we recorded EEG and eye-tracking data 
throughout the entire rating task (Fig. 3a). 
 
We controlled for background lighting by conducting all 
experimental procedures in a dark room, eliminating potential 
interference from external light sources. While participants 
were not explicitly screened for prior experience with similar 
tasks, the task design did not involve paired comparisons, 
minimizing potential learning effects during the experiment. 

D. EEG ACQUISITION AND ANALYSES 
EEG were recorded using a actiCHamp EEG system (Brain 
Products GmbH, Germany), a 32-channel (Ag/AgCl 
electrode) actiCap recording system (Brain Products GmbH, 
Germany), and a sampling rate of 500 Hz (Fig. 3b). We used 
the Cz channel as the reference and the FPz channel as the 
ground. Impedance of all channels were maintained below 10 
kΩ. EEG data analyses were conducted using EEGLAB 
version 2022.1 (Swartz Center for Computational 
Neuroscience, University of California at San Diego, CA) and 
MATLAB R2021a (Mathworks Ltd., Natick, MA). Raw EEG 
data were filtered using a 0.1-100 Hz band-pass filter and a 55-
65 Hz notch filter. We used the Common Average Reference 
(CAR) and additionally, Independent Component Analysis 
(ICA) to correct for eye movement. The preprocessed EEG 
data were sliced into epochs, with each epoch encompassing 
EEG responses from -500 to 1000 msec around the stimulus 
onset (Fig. 3c). Baseline correction was applied using a 200-
msec pre-cue window. Epochs were visually inspected, and 
those with peak amplitudes exceeding 100 mV were excluded. 
 

 

 

FIGURE 2. Experimental procedures and behavioral results. (a) 
Participants were asked to evaluate vividness, valence, or arousal of a series 
of images. The task followed a block design, wherein each block required 
participants to evaluate either vividness, valence, or arousal (block order was 
counterbalanced). At the beginning of each block, participants were informed 
of the specific evaluation criterion to apply. A selected set of images were 
simulated to six different conditions (three White-boosting modes [High, Low, 
Off] ´ two color gamut [DCI-P3, sRGB]) and all the prepared images were 
presented in a pseudo-random order. While watching a series of images, 
participants were instructed to report their subjective ratings at their own pace 
using a 6-point Likert scale. For illustrative purpose, license free images were 
used in depicting the task scheme. (b) Self-reports on the subjective 
vividness rating were comparable across all three White-boosting modes. 
Error bars indicate s.e.m; n.s., not significant. 

E. EYE-TRACKING AND ANALYSES 
Binocular eye movement data were recorded using an infrared 
eye tracker, EyeLink 1000 Plus (SR Research Ltd., Kanata, 
Canada), at a sampling rate of 1000 Hz. The eye tracker was 
mounted on a desk for each participant, and their head and chin 
were stabilized using a headrest during recording. Prior to data 
collection, each participant underwent a standard five-point 
calibration and validation procedure to ensure accurate gaze 
tracking. Calibration accuracy was verified, and recalibration 
was performed if the average error exceeded 0.5 degrees. In 
the current study, blinks and saccades were identified for each 
eye using EyeLink’s standard criteria, followed by linear 
interpolation of these intervals. Specifically, for blinks, 
interpolation was applied between 150 msec pre- and post- 
blink. The mean interpolated data from both eyes were then 
band-pass filtered between 0.02-4 Hz using third-order 
Butterworth filters to isolate relevant signal frequencies. The 
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preprocessed data were normalized within each block by z-
scoring, standardizing pupil diameter changes relative to each 
block’s mean and standard deviation. From the eye-tracking 
data, extracted measures of eye movement and pupillometric 
patterns included: saccade and blink frequency, mean duration 
of saccades and blinks, peak velocity of saccades, mean pupil 
diameter within each trial, and the temporal dynamics of pupil 
diameter (Fig. 3d,e). When analyzing pupil diameter 
responses, epochs were defined to encompass responses from 
-200 to 1500 msec around the stimulus onset, with baseline 
correction achieved by subtracting the mean pupil size 
measured at the stimulus onset. 
 
 

 

 

FIGURE 3. Experimental setup for neural and physiological 
measurements. (a) Participants were seated in front of an eye-tracker, 
wearing an EEG electrode cap, while they viewed the TV display. To 
maximize the data quality, participants’ foreheads and chins securely 
positioned on a headrest. (b) EEG recordings were obtained from 32 Ag/AgCl 
electrodes mounted on a cap, extending the international 10/20 system. (d) 
The example of EEG data illustrate time series data from three exemplary 
channels (Fz, FC2, and F4) is depicted. (c) The infrared eye-tracker was used 
to measure the pupil center and corneal reflection for eye gaze calculation, in 
addition to capturing pupil diameter. (e) The example data illustrate the 
changes in eye gaze and pupil diameter over time. 

 
 

F. STATISTICAL ANALYSES 
To test the impacts of objective White-boosting modes on 
individuals’ subjective ratings, we used repeated measures 
Analysis of Variance (rmANOVA). When examining the 
neural and physiological representation of the White-boosting 
modes, we used a repeated measures Analysis of Covariance 
(rmANCOVA) for EEG and eye-tracking measures where the 
mean valence and arousal ratings associated with stimuli, 
derived from the original IAPS database, were entered as 
covariates-of-no-interest. All data from the three rating blocks 
(vividness, arousal, and valence) were pooled, and to address 
potential differential effects across blocks, block identity was 
included as additional main factor.  
 
Note that the test was conducted for all time-points within the 
epoch (and for all channels in the case of EEG analyses), 
which allowed us to explore the temporal representation as 
well as the average patterns. To correct for multiple 
comparisons, we used cluster-based permutation testing [32]. 
Cluster-based permutation testing was chosen because it is 
particularly well-suited for data with spatiotemporal 
dependencies, such as EEG and eye-tracking. Traditional 
correction methods, such as the Bonferroni correction, treat 
each data point as independent, which can be overly 
conservative and increase the likelihood of false negatives 
(Type II error). In contrast, the cluster-based permutation 
method identifies clusters of adjacent significant effects rather 
than isolated data points, thereby preserving sensitivity. 
Moreover, unlike parametric correction tests, cluster-based 
permutation does not assume a specific data distribution, 
making it robust for analyzing non-normally distributed 
neurophysiological data. The threshold for cluster formation 
was set at an F-test significance level of p = 0.005. Cluster 
mass was computed across time and space points, and adjacent 
significant time-space points were merged as the same cluster. 
Significance was determined by comparing the cluster mass to 
the maximum cluster size obtained through 95% chance 
permutations (1000 random permutations); each permutation 
involved resampling a pseudo-group of the same size as the 
original group, with replacement. Only clusters exceeding this 
maximum size were considered significant, using a one-tailed 
alpha level of 0.05 [23, 33].  
 
To investigate the representation of subjective vividness 
ratings, we performed multiple linear regression analyses 
where the single-trial EEGs or pupil diameter from the 
vividness rating block was dependent variable, and subjective 
ratings (vividness, arousal, and valence) were set as 
independent variables. As in the investigation of the objective 
White-boosting modes, the regression analyses were 
conducted for all time-points within the epoch and for all 
channels in the case of EEG analyses. The threshold for cluster 
formation was set at a t-test significance level of p = 0.005, 
and cluster significance was determined using a two-tailed 
alpha level of 0.05.  
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III. RESULTS 

A. SELF-REPORTS ON VIVIDNESS LACK SENSITIVITY 
IN CAPTURE THE SEQUENTIAL ADJUSTMENTS OF 
WHITE-BOOSTING 
To assess whether objective White-boosting modes were 
reflected in subjective ratings, we compared individuals’ 
ratings from the vividness rating block across different levels 
of White-boosting. In contrast to our pilot study, in which two 
displays were set to different levels of White-boosting and 
presented side-by-side, subjective vividness ratings in the 
current study showed only subtle differences (Off = 3.69, Low 
= 3.72, High = 3.74), and the scores were statistically 
comparable across different modes (F(2,32) = 1.63, p = 0.21; 
Fig. 2b). We additionally examined whether adjustments in 
White-boosting influenced individuals’ evaluations of 
emotions associated with the images. However, there was no 
clear evidence indicating significant effects of White-boosting 
adjustments on emotion evaluation (Valence: F(2,32) = 0.71, 
p = 0.50; Arousal: F(2,32) = 0.59, p = 0.56; Fig. S1). One may 
argue that individuals’ subjective ratings in the current study 
might be simply too noisy. This is unlikely given that the 
valence and arousal ratings collected from the participants 
were highly correlated with the normative ratings from the 
original database ([34]; Valence: r = 0.91, p < 0.0001, Arousal: 
r = 0.79, p < 0.0001). These results suggest that, as suspected, 
behavioral self-reports might lack sensitivity to capture 
individuals’ differential assessments of image qualities 
induced by White-boosting adjustments. 
 
 

 

FIGURE 4. Objective White-boosting modes manifest in distinct EEG 
responses. (a) Participants exhibited distinctive EEG patterns in response to 
three different White-boosting modes. Data from the Fz, FC1, and C3 
channels are depicted as exemplar electrodes demonstrating significant 
effects of White-boosting modes. Specifically, ERP peak amplitudes between 
200-300ms after the stimuli onset on these channels were significantly higher 
for stimuli with high White-boosting (red) compared to that with White-
boosting mode turned off (gray); black underlines indicate statistically 
significant time periods (cluster-based permutation, p < 0.05). (b) 
Topographical representation of F-statistics across 31 EEG channels is 
illustrated for three time points after the stimuli onset. Statistically significant 
impacts of White-boosting modes were specifically observed in the 
frontocentral region around 250ms after the stimuli onset. 

B. EEG AND EYE-TRACKING FEATURES REFLECT 
WHITE-BOOSTING ADJUSTMENTS 
To investigate the neural instantiation of White-boosting 
effects, we compared ERPs across three levels of White-
boosting modes. Three frontocentral channels (Fz, FC1, C3) 
showed significant ERP differences approximately 200-300 
msec after stimulus onset (Fig. 4a). Specifically, ERP peak 
amplitudes were highest for the mode with the highest White-
boosting, and vice versa. Note that such effects of White-
boosting adjustments were specific to the aforementioned time 
window and the frontocentral region (Fig. 4b, Fig. S2). 
Consistent with previous studies using emotional stimuli [20, 
21, 24], a positive potential approximately 400-800 msec after 
stimulus onset reflected the influence of image-associated 
arousal and valence (Fig. S3). 
 
Next, the impacts of White-boosting adjustments on eye-
movement and pupillometric measures were examined. In 
terms of eye-movement, we found significant effects in the 
frequencies of saccade and eye blinking (Fig. 5, S4). The 
saccade frequency exhibited a significant negative association 
with the level of White-boosting modes (F(2,32) = 4.93, p = 
0.014; Fig. 5a). Specifically, saccades occurred less frequently 
under the high level of White-boosting compared to the White-
boosting Off setting (post-hoc Tukey test, p = 0.011). 
Similarly, blink frequency showed a decreasing association 
with the increasing level of White-boosting (F(2,32) = 5.53, p 
= 0.0087; Fig. 5b), with the Tukey test confirming 
significantly fewer blinks at the White-boosting High level 
compared to the White-boosting Off level (p = 0.033). Note 
that the effects of image-associated arousal and valence ratings 
were account for as the effects of covariates-of-no-interest 
(Fig. S5). Together, these results suggest that White-boosting 
adjustments have a notable modulation effect in visual 
exploration.  
 
Pupillometric measures showed largely the same responses to 
White-boosting adjustments. Specifically, the mean pupil 
diameter decreased as a function of the level of adjustments 
(F(2,32) = 35.46, p < 0.001; Fig. 5c), with the Tukey test 
indicating the smallest pupil diameter for the highest level of 
White-boosting (p < 0.001 for all post-hoc paired 
comparisons). The temporal dynamics of pupil diameter 
revealed a distinct pattern marked by a sudden drop around 
340 msec after the stimulus onset followed by a gradual rise 
(Fig. 5d). This negative deflection of pupil diameter was 
significantly more exaggerated under the higher level of 
White-boosting adjustments (F(2,32) = 3.39, p = 0.046). The 
post-hoc Tukey test confirmed that each level was 
significantly distinguishable from the others (p < 0.001). See 
Figure S5 for the effects of image-associated arousal and 
valence on pupillometric measures, which were regressed out 
as covariates from these results. Note that the White-boosting 
algorithm involves an increase in luminance for a part of 
image pixels. Our findings mirror previous research that 
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showed a strong association between pupil diameter and the 
luminance of stimuli [35]. 
 

 

FIGURE 5. Objective White-boosting modes manifest in distinct eye 
movement and pupillometric patterns. Participants’ (a) saccade frequency, 
(b) blink frequency, and (c) mean pupil diameter were significantly different 
for different levels of White-boosting modes. Error bars indicate s.e.m.; * p < 
0.05, ** p < 0.01, *** p < 0.001. (d) The temporal dynamics of pupil diameter 
revealed distinct patterns corresponding to the levels of White-boosting 
mode, consistent with the observations in (c). Shaded areas represent s.e.m. 
and black underlines indicate statistically significant time periods (cluster-
based permutation, p < 0.05). 

C. EEG AND EYE-TRACKING FEATURES REFLECT 
SUBJECTIVE VIVIDNESS ASSESSMENTS 
To investigate neural and physiological representation of 
subjective vividness ratings, we analyzed EEG and eye-
tracking data from the vividness rating block. First, to illustrate 
differential EEG and pupil responses, image rating trials were 
classified into three equal-sized subgroups (dull, mid, and 
vivid) based on individuals’ subjective vividness ratings. Each 
image was presented 12 times ([3 White-boosting] * [2 color-
gamut] * [2 repetition]) throughout the entire task, and the 
average rating across all 12 rating attempts was used to 
determine the subgroup assignment, which allowed us to 
examine the representation of subjective evaluation 
independent of objective levels of White-boosting 
adjustments.  

 
The ERPs from the F4 channel showed differential patterns 
among the three subgroups approximately 600 msec after the 
stimulus onset (Fig. 6a). Specifically, the ERP amplitude was 
highest on vivid trials (i.e., trials with top 33.3% vividness 
ratings) and lowest on dull trials (bottom 33.3%). Subsequent 
multiple linear regression analyses confirmed that the level of 
positive deflection reflected individuals’ subjective vividness 
ratings (β1) even after controlling for potential confounding 
factors associated with each stimulus (arousal and valence 
ratings) (Fig. 6b, S6). Beta coefficients for arousal and valence 
ratings were not significantly different from zero. These 
results remained consistent in the additional residual 

regression analysis (Fig. S7), demonstrating the robustness of 
the findings. 
 
Analysis of eye-tracking metrics revealed a perceptible trend 
correlating with the vividness ratings assigned by participants. 
First, stimuli perceived as more vivid elicited a slight decrease 
in saccade peak velocity (Fig. 7a). The multiple regression 
analysis substantiated this observation, as the beta coefficient 
for vividness ratings revealed a negative correlation with 
statistical significance (β1, t(16) = -2.78, p = 0.013; Fig. 7b). 
In contrast, the beta coefficients for arousal and valence 
ratings did not reach statistical significance (Arousal (β2): 
t(16) = -0.018, p = 0.99; Valence (β3): t(16) = 1.48, p = 0.16). 
This pattern suggests that higher subjective vividness 
evaluations are associated with a measurable reduction in 
saccade peak velocity. 
 

 

FIGURE 6. Vividness ratings manifest in distinct EEG responses. (a) All 
stimuli were categorized into three groups (dull, mid, and vivid) based on 
individuals’ subjective vividness ratings. ERP amplitudes in the F4 channel 
exhibited distinct patterns among the three image groups, particularly at a 
later period. (b) Multiple linear regression analysis revealed that the 
representation of individuals’ subjective vividness ratings as a late positive 
potential remained significant even after controlling for subjective arousal and 
valence ratings about the stimuli. β1, β2, and β3 indicate regression 
coefficients for Vividness, Arousal, and Valence ratings, respectively. Shaded 
areas represent s.e.m. and black underlines indicate statistically significant 
time periods (cluster-based permutation, p < 0.05). (c) Topographical 
representation of t-statistics across 31 EEG channels is illustrated for three 
time points after the stimuli onset. Statistically significant impacts of 
subjective vividness rating were observed primarily in the frontal region on the 
right hemisphere around 830ms after the stimuli onset. 
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FIGURE 7. Vividness ratings manifest in distinct eye movement and 
pupillometric patterns. All stimuli were categorized into three groups (dull, 
mid, and vivid) based on individuals’ subjective vividness ratings. (a) Saccade 
peak velocity and (c) mean pupil diameter patterns are illustrated for each 
level of subjective vividness ratings. (b, d) Multiple linear regression analysis 
revealed that the representation of individuals’ subjective vividness ratings as 
a slower saccade velocity or a smaller pupil diameter remained significant 
even after controlling for task-irrelevant ratings about the stimuli. β1, β2, and 
β3 indicate regression coefficients for Vividness, Arousal, and Valence 
ratings, respectively. Error bars represent s.e.m.; * p < 0.05, *** p < 0.001. (e) 
The temporal dynamics of pupil diameter are illustrated for each level of 
subjective vividness ratings. (f) Regression coefficients for the three 
subjective ratings over time are depicted. Shaded areas represent s.e.m. and 
black underlines indicate statistically significant time periods (cluster-based 
permutation, p < 0.05). 
 
Pupil diameter findings showed largely the same trend. We 
observed a decrease in mean pupil diameter associated with 
higher vividness ratings (Fig. 7c). Once again, the regression 
analysis revealed a significant beta coefficient for vividness 
(β1, t(16) = -4.72, p < 0.001; Fig. 7d), while coefficients for 
arousal and valence remained non-significant (Arousal (β2): 
t(16) = -1.66, p = 0.12; Valence (β3): t(16) = 1.60, p = 0.13). 
This trend suggests that the subjective experience of vividness 
could be quantitatively assessed through changes in pupil 
diameter, indicating a physiological correlation with how 
vividness is visually processed. Note that the observed 
negative associations between pupil diameter and vividness 
ratings align with previously reported pupil responses to bright 
illusion [36], which is often associated with bright stimuli and 
may result in a reduction in pupil size. 

 

The temporal dynamics of pupil diameter depicted separately 
for the equal-sized vividness subgroups (dull, mid, and vivid) 
mirrored the patterns observed for the objective White-
boosting modes, showing significant shifts in response to the 
stimuli’s vividness (Fig. 7e). Based on the regression analysis, 
the beta coefficient for vividness ratings (β1) exhibited a 
significant drop, becoming statistically notable shortly after 
the onset of the stimulus (306 msec post-onset; t(16) = -2.12, 
p = 0.05; Fig. 7f). In contrast, the coefficients for arousal (β2) 
and valence (β3) did not reach statistical significance. These 
results underscore the nuanced and dynamic physiological 
response to visual vividness, highlighting the intricate 
relationship between subjective experience and ocular metrics. 
Note that these results remained consistent in the additional 
residual regression analysis (Fig. S8). 
 

IV. DISCUSSION 
In the current study, we investigated whether EEG and eye-
tracking data represent display quality objectively 
manipulated by the White-boosting algorithm, an image 
quality enhancement algorithm available on a commercially 
available TV set. In addition, we explored potential 
association between these measures and subjective reports of 
display quality. Our findings reveal that features extracted 
from EEG and eye-tracking data capture differences in 
objective image quality. Shared and dissociable sets of 
features significantly reflected individuals’ subjective 
vividness ratings. These results showcase the potential of 
using neural and physiological measures to bridge the gap 
between objective display metrics and subjective visual 
comfort, opening doors for personalized TV settings based 
on neurophysiological responses.  
 
Typical display viewing situations involve only one display, 
and therefore individuals rarely have the opportunity to 
compare the image quality of multiple displays. Diverging 
from such a naturalistic setting, many laboratory 
experiments in psychophysics use a form of two-alternative 
forced-choice (2AFC) procedures, wherein participants are 
asked to compare the image quality of different displays 
placed side-by-side [37]. On the contrary, the current study 
employed a single-display task in which participants rated 
consecutively presented images. The data acquired from 
evaluating the quality of a single image at a time were 
expected to be much noisier than our pilot 2AFC data 
regarding the vividness of images, given that individuals’ 
performance in absolute judgment tasks is known to be 
poorer than in relative judgment tasks [38]. As anticipated, 
our self-report data on vividness did not show significant 
differences tracking objective changes in image quality (i.e., 
White-boosting). Nevertheless, this choice of task paradigm 
allowed us to examine the neural and physiological 
representations of the assessed absolute characteristics of 
images, as well as to investigate individuals’ subjective 
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responses to a more naturalistic viewing situation. Given the 
potential of separable brain circuits involved in absolute 
versus relative value representation [39], our task design 
offer a better benchmark for future applications in measuring 
individuals’ subjective image quality assessment using 
neural and physiological evidence. 
 
A previous study reported that the amplitude and latency of 
P300, an ERP peak observed around 300 msec after the event 
onset, are associated with the blurriness of images [27]. The 
study presented a reference image before each target image 
to evaluate, thus linking the reported EEG feature to the 
detection of differences between two consecutively 
presented images. As described above, the current study was 
designed to induce the representation of the quality of images 
per se, rather than to induce error detection. Despite the 
difference in task design, our data confirmed that, consistent 
with the previous study, P300 responses from the 
frontocentral channels represented the objective image 
quality manipulated in the current study. Given that the self-
reports on vividness did not significantly correlate with the 
objective quality, one might suspect that participants did not 
follow the instruction and made random responses 
throughout the task, raising questions about the 
interpretation of the associated ERP responses. Yet, this is 
unlikely because individuals’ self-reports regarding other 
characteristics of presented images (arousal and valence 
ratings), along with the associated ERP responses, closely 
matched and validated the results from previous studies [20, 
21, 24, 34]. These results suggest that the sensitivity of 
neural representation to the image quality of displays may be 
higher than that of self-reports. 
 
In previous research, it was suggested that the late positive 
potential (LPP) is associated with emotionally arousing 
stimuli [20, 21, 24]. Expanding this view, we identified that 
regardless of individuals’ subjective ratings on emotional 
responses (both arousal and valence), the LPP represents 
individuals’ subjective vividness ratings. This ERP feature 
observed at a later period was clearly distinguishable from 
the earlier P300, suggesting that the objective and subjective 
impacts of image quality are both represented separately at a 
neural level. These findings align with previous studies. The 
earlier ERP feature likely reflects low-level perceptual 
processing, such as detecting image blurriness or contrast 
differences [24, 27, 40], while the later feature is associated 
with higher-level cognitive processes, including subjective 
evaluation of image content and emotional arousal [20, 21, 
24]. In contrast to self-ratings, which often fail to sensitively 
capture individuals’ implicit beliefs and unconscious brain 
processes [41-43], these ERP features underscore the 
complementary role of neural measures in bridging the gap 
between objective assessments and subjective evaluations of 
image quality. 
 

There was a stark difference in the physiological responses 
to the examined image quality. Unlike the unique EEG 
features, our eye-tracking data showed that a common 
pupillometric feature reflects both the objective image 
quality and individuals' subjective ratings on vividness. The 
pupillometric responses to the White-boosting modes are 
consistent with previous studies, which have shown that 
pupil diameter decreases as the brightness of observed 
content increases [35, 44, 45]. Based on our regression 
results, we can rule out an alternative explanation that the 
associated pupil responses simply reflect the image-induced 
arousal level [8], and instead suggest that the observed 
pupillary responses demonstrate the low-level perceptual 
impacts of the White-boosting, as observed in examples of 
visual illusions [36, 45]. We also found evidence suggesting 
potential impacts of the image quality enhancement on 
higher-level cognition. Although not exactly the same, 
closely related eye movement measures—saccade and blink 
frequency, and saccade peak velocity—reflected the image 
quality or individuals’ ratings to a comparable extent. This 
suggests that the enhancement of image quality increases 
induced attention level and cognitive loads during the 
viewing of the images [8, 46, 47]. Together, our data 
demonstrate the feasibility of using eye-tracking to capture 
both the objective optical characteristics and viewers’ 
subjective evaluation of a display. 
 
The current study has the following limitations. First, the 
current study had a relatively small sample size of 17 
participants. It is possible that with a larger sample size, 
subtle trends in self-reports on vividness might show 
statistical differences among different levels of White-
boosting modes. Still, our data in the arousal and valence 
blocks successfully replicated the behavioral and neural 
results of previous studies, demonstrating the validity of all 
our approach and the corresponding results. Second, the 
neural and physiological features identified as predictors of 
individuals’ subjective responses were specific to self-
reports on vividness—a measure aligned with the intended 
quality enhancement algorithm. It is uncertain whether the 
same set of features would be discovered if another axis of 
self-report, appropriately capturing image quality, were 
used. Third, we did not examine the impacts of prolonged 
screen time on both the user’s experience (i.e., vividness) and 
its neurophysiological representation. Future studies may 
address this gap and evaluate the robustness of the features 
discovered in the current study. 
 
Nevertheless, our data suggest that, unlike self-reports, which 
can be subjective and inconsistent, neurophysiological data 
may provide more stable and personalized features for 
optimizing image quality. Several practical challenges exist in 
implementing such a personalized optimization approach. 
First, the system may require additional hardware, such as 
EEG or eye-tracking devices, increasing both complexity and 
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cost, thereby limiting accessibility for general consumers. 
Recent advancements in lightweight and cost-effective 
wearable technologies offer promising avenues for reducing 
hardware costs. Additionally, optimizing the system to rely on 
a minimal dataset—focusing on key neurophysiological 
markers—could further mitigate costs by streamlining data 
acquisition and processing. Second, scalability is another 
critical concern, particularly in adapting the system for 
diverse user populations. Future studies should directly 
investigate the degree to which the predictive model 
generalizes across individuals, reducing the need for 
extensive individual calibration. By addressing these 
challenges, the proposed framework could offer a scalable 
and cost-efficient solutions for enhancing user experience in 
real-world applications. 
 

V. CONCLUSION 
The viewing experience of displays does not merely improve 
with enhanced optical characteristics (e.g., higher resolution), 
but also requires tailored settings for each individual to 
optimize subjective evaluation and approach realism (e.g., 
lively, natural, and vivid) [48-50]. To quantify the extent to 
which individuals respond to image quality adjustments, we 
used EEG and eye-tracking recordings, two methods 
previously validated to be useful in explaining a broad range 
of individual differences and mental illness [13, 51]. By 
exploring neurophysiological features reflecting display 
quality, our data show the feasibility of using EEG and eye-
tracking to evaluate not only objective image quality but also 
the impact of manipulated image quality on individuals’ 
subjective perception. Our findings provide a 
neurophysiological explanation about the impact of visual 
stimuli on human responses, offering insights into bridging the 
gap between objective display metrics and individuals’ visual 
comfort.  
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